
Report on Starfish v. 1.39
A Perl-based System for Text-Embedded

Programming and Preprocessing

(Starfish Version 1.39, Document Revision 393)

Vlado Kešelj

August 12, 2020

Abstract

This report is meant to be the most up-to-date documentation on Starfish. However, it
has not been completed yet. A large part of it is a direct POD Documentation generated
from in-code documentation.

Starfish is an open-source, Perl-based system for text-embedded programming and
preprocessing. It demonstrates a relatively simple methodology based on regular expression
matching and rewriting, which is implemented in Perl in a transparent way.

The main idea is similar to the text-embedding style of PHP and other systems, many
of which where also implemented as Perl modules, but there are several essential novel
features of Starfish.

Contents

1 Introduction 3
1.1 Preprocessing and Text-Embedded Programming (PTEP) 3
1.2 Goals of Starfish Development . 4
1.3 Java Preprocessor Example . 5

1.3.1 Fully-Embedded Preprocessor . 7
1.3.2 Preprocessing Multiple Files . 10
1.3.3 Replace Mode . 11

1.4 The Name of the Game . 12
1.5 Overview . 12

2 Background and Related Work 13
2.1 Text-Embedded Programming . 14
2.2 Perl-based Embedded Programming . 15

2.2.1 PTEP in the Update Mode . 19

3 Starfish Usage and Design 20
3.1 Modifying Starfish to Different Text Styles 20

3.1.1 Default Style Example: Makefiles 22
3.1.2 HTML Style Example . 23

3.2 Text Styles . 26
3.2.1 HTML-Sfish Style (html.sfish) . 26

3.3 Hooks . 27
3.4 Iterative Processing . 28
3.5 Starfish Processing Model . 29

3.5.1 Method digest . 29
3.5.2 Method scan . 29

4 Conclusion 30

A POD Documentation 34
A.1 NAME . 34
A.2 SYNOPSIS . 34
A.3 DESCRIPTION . 34
A.4 EXAMPLES . 35

1

A.5 PREDEFINED VARIABLES AND FIELDS 41
A.6 METHODS . 42
A.7 PREDEFINED FUNCTIONS . 46
A.8 STYLES . 50
A.9 STYLE SPECIFIC PREDEFINED FUNCTIONS 51
A.10 LIMITATIONS AND BUGS . 52
A.11 THANKS . 52
A.12 AUTHORS . 52
A.13 SEE ALSO . 52

2

Chapter 1

Introduction

This report describes the system Starfish—a system for Perl-based text preprocessing and
text-embedded programming. In this introduction, we will try to make a case for a need
for such system, and its design, implementational, and maybe even philosophical goals.

1.1 Preprocessing and Text-Embedded Programming

(PTEP)

There is a wide need in computer science for text preprocessing and text-embedded pro-
gramming, or shorter Preprocessing and Text-Embedded Programming (PTEP).

We define text preprocessing as any operation that takes text as input and produces
a similar text as output; and it serves as a way to automate manual editing of the
text. It is called “preprocessing,” since there is normally some standard use of that type
of text that would be called “processing;” such as compilation or interpretation of a
programming language, rendering of an HTML page, and similar. A typical example of a
preprocessor is the C programming language preprocessor [5], which is mostly used for
simple text inclusions or exclusions based on some configuration parameters and simple
text replacements, before the C program code is passed to the compiler.

Text-embedded programming is a related but generally different concept than text
preprocessing. We define text-embedded programming as any form of computer programming
where code is embedded in an arbitrary text, and can be executed in-place, in that text
context. One of the first examples of text-embedded programming can be considered the
TEX typesetting system by Donald Knuth, released in 1978. [13] TEX has its own language
of annotating text to prepare it for text typesetting and printing in form of papers, books
and similar documents; but TEX language also includes a “macro” language for text
transformation in-place before the final preparation of the output pages. This macro part
of the language is a form of preprocessing but also text-embedded programming because
it is Turing-complete and one can write a general-purpose program in this language. The
TEXbook [13] contains a famous example of a table of prime numbers, generated in the
TEX macro programming language, written by Knuth.

3

The second, more obvious example of text-embedded programming is the PHP pro-
gramming language [19]. A PHP program file is usually an HTML file with the snippets of
PHP code inserted in the file. The file is processed, or we could say preprocessed, before
being delivered to the HTML browser in such way that the PHP snippets are replaced
with their output produced using the command echo. The snippets are delimited with
the strings <?php and ?>, or simply with <? and ?>. This model is particularly convenient
for fast development of web apps, where we can start with a static (pure) HTML page
and incrementally replace pieces with dynamic PHP-generated code. A similar approach
was used in ASP (Active Server Pages) [29] engine or JSP (JavaServer Pages) [28], both
of which use <% and %> delimiters for code snippets.

The third example of text-embedded programming is the project Jupyter, formed in
2015, which supports inclusion of Python, Julia, or R programming language snippets in a
file called Jupyter Notebook [10]. Although this example of text-embedded programming
is not transparent in the sense that a Jupyter Notebook is not a plain text file, it is still
very close to a text file (it is in the JSON format), marked in a language called Markdown,
which gets translated into HTML, and it allows inclusion of arbitrary code in Python (or
other allowed language), that can be executed. The result of the execution is shown in the
notebook itself. This is a novelty, compared to PHP for example, that we will call the
update mode, vs. the replace mode used in PHP, ASP, JSP, and similar template languages.

1.2 Goals of Starfish Development

Starfish development and use with that name started in 2001. These lines of documentation
are written some 19 years later, so a natural question is whether there is still the same
level of novelty in it, and whether there exist systems with needed functionality. The main
goal of Starfish development is a universal preprocessing and text-embedded programming
(PTEP), and I am not aware of another similar effort. I find the Perl particularly suitable
to be an embedded language, and even more surely there is no such universal system with
Perl as an embedded language. I understand that this particular Perl orientation may be
seen as a subjective personal preference, but still it may represent a significant advantage
to a portion of readership.

The main feature of Starfish is universal Preprocessing and Text-Embedded Program-
ming, which is a goal that that the system can be used in many different textual contexts,
such as programming languages, web languages (e.g., HTML, CSS), data formats (e.g.,
JSON), typesetting languages (e.g., TeX, LaTeX), and others (e.g., make, procmail).

Some of the main Starfish features that were the reason and goal of its development
are:

• Universal Preprocessing and Text-Embedded Programming (PTEP): is
the goal of creating a universal system that can be used for PTEP for various types
of text files (e.g., HTML, LaTeX, Java, Makefile, etc.)

• Update and Replace Modes: Starfish supports two modes of operation: replace
mode — similarly to PHP or C preprocessor, where the snippets are replaced with

4

the snippet output and the complete output is saved in the output file or produced
to the standard output; or update mode — similarly to Jupyter, where the snippet
output is appended to the snippet in the updated source file.

• Flexible PTEP: Starfish is flexible, in the sense that we can modify the patterns
that are used to detect active pieces of text. The basic pattern used to detect and
execute code snippets, can be generalized to make active “hooks” from any string,
pair of delimiters, or regular expression pattern. Starfish also provides flexibility in
defining the way snippets (active code) is evaluated.

• Configurable PTEP: Starfish allows user-defined configuration per directory, and
it uses directory hierarchy for a more wide configuration definition.

• Transparent PTEP: Starfish provides transparency in the sense that when a file
with Starfish snippets is processed, assuming it is a static file, we do not need Starfish
any more to use it. For example, an HTML file is still an HTML file viewable by a
browser, a LaTeX file is still a LaTeX file processable by LaTeX, and so on. As a
comparison, a Jupyter file is a special-format JSON file, which needs to be processed
to produce HTML, LaTeX, or other forms usable by a user.

• Embedded Perl: Even though the main principles of Starfish could be implemented
in many languages, Perl is particularly convenient for both Starfish implementation,
use in code snippets, and configuration. As a comparison, TEX uses its own language
for PTEP and it is difficult to use since its paradigm and notation style are so
different from the main main-stream languages. The C preprocessor works well for
C, but in attempts to use it in other systems, like Imake for the Makefiles, it was
not very successful and it was difficult to use since it was not meant for that kind
of context. Using a general-purpose language that is used for other purposes has a
clear advantage, and Perl succinctness and expressiveness in working with strings in
particular, makes it an excellent candidate.

1.3 Java Preprocessor Example

Let us start in the introduction with one example to illustrate Starfish operation. As we
mentioned, a preprocessing example is the C preprocessor, which is a useful and unique
feature of the C programming language. It is a part of the C compiler, but it is a simple
language in its own, which does simple text manipulation before feeding it to the proper C
compiler. One use of the preprocessor is inclusion or exclusion of parts of code depending
on values of some configuration variables. It preprocesses C source code as a general text,
without a detailed use of C syntax or semantics. It is sometimes criticized for not using
deeper semantics of the language, and it is also praised for the same reason because it is
very clear what it does and it can be used on text other than C programs. For example, it
was used in the Imake system [32, 3] for preprocessing Makefiles [7, 25]. Java does not
have a preprocessor and it would be useful in some situations.

5

Sometime around 2001, I was working on a Java software system where I needed two
versions of source code: a test version to be used for testing and development, and a release
version to be the production release. The test version could carry around a lot of meta
information on data structures, be able to produce verbose debug code, make additional
expensive run-time checks, and similar, while the release version would be efficient and
slim in code size and running time. This means that at various places in the source code,
I needed to write two versions of code snippets: a test version and a release version, and
the appropriate version would be included everywhere based on the value of some global
variable. This could be simulated using Java constructs, but the release code would be
bloated and running-time efficiency of the release code would not be easy to achieve.

As an example, we will consider the following simple Java code:

/**

A simple Java file.

*/

public class simple {

public static in main(String[] args) {

System.out.println("Test version");

System.out.println("Release version");

return 0;

}
}

where the red line would be included in the test version of the code, and the blue line
would be included in the release version of the code.

One solution would be to use the C preprocessor. However, the C preprocessor is a
part of the C compiler and it is not meant and not convenient to use independently. Its
functionality is tailored to the C language, and it is not as easy to use for general and
more flexible text processing that we may want to have. It is more convenient to write a
text processor in Perl from scratch than to rely on the C preprocessor. That leads to the
second solution: write an independent preprocessor from scratch in text-friendly high-level
language like Perl. This is how we can get an idea of a general-purpose preprocessing
system. The system m4 [6, 26] is one such system, but it is limited to general-purpose
macro processing, has its own, specific syntax, and it does not support the update mode
of operation.

1.3.1 Fully-Embedded Preprocessor

There are many ways we could approach our preprocessing task, which basically need to
include or exclude annotated parts of code. Similarly to the C preprocessor, we could read

6

our source Java file and produce another Java file, which will then be ready for compilation.
To distinguish these two files, we could come up with a different name extension for the
first Java file, which we could call a meta-source code file. One issue with this approach is
that we now must manage two files for the same Java source file, and the second issues is
solving the question of how exactly our preprocessor should look like. We could emulate
the functionality of the C preprocessor, but designing a new universal preprocessor would
allow us to think bigger and aim at a more open-ended general functionality. Both of these
issues are addressed with a fully-embedded preprocessor, which combines preprocessing
instructions and preprocessing result in the same file, and allows for a quite general Perl
preprocessing code. Starfish provides this functionality.

Our example Java file could be written in the following way using the Starfish conven-
tion:

/**

A simple Java file.

*/

// Uncomment version:

//<? $Version = ’Test’; !>

//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>

return 0;

}
}

Starfish code is embedded perl code found between delimiters <? and !>, and it is
commented out using the Java line comment notation //. The blue and red lines are
used to choose version of the software that we want to produce. The red line contains
code commented out in Perl, so that chosen version is the “Test” version. The green
snippet code shows how we can select the appropriate line of Java and produce it. The
Perl variable $O is used as a special variable to specify the generated code. Starfish has
also a command echo that effectively appends to this variable.

The result of preprocessing is not a new file, but the source file is actually updated.
We call this the update mode of Starfish and it is the default mode. This is why we call
Starfish a fully-embedded preprocessor. If the name of the Java file is simple.java then
we would run the following command:

7

$ starfish simple.java

and the contents of the file simple.java is now:

/**

A simple Java file.

*/

// Uncomment version:

//<? $Version = ’Test’; !>

//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>//+

System.out.println("Test version");//-

return 0;

}
}

We can see that the desired line of code has been generated and inserted in the file
(magenta-colored part). The generated part is delimited with strings //+ and //-, so if
we run the starfish again on the file, the file will not be changed because the generated
part would be replaced with the same generated string. If by coincidence our output code
contains the string //-, Starfish will insert a number in the delimiters, e.g., //3+ and //3-

so that the ending delimiter is not confused with the generated code.
If we comment out the ‘Test’ line and uncomment the ‘Release’ line in the new

simple.java file as follows:

/**

A simple Java file.

*/

// Uncomment version:

//<? # $Version = ’Test’; !>

//<? $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

8

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>//+

System.out.println("Test version");//-

return 0;

}
}

and run:

$ starfish simple.java

again, the file simple.java file will look as follows:

/**

A simple Java file.

*/

// Uncomment version:

//<? # $Version = ’Test’; !>

//<? $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>//+

System.out.println("Release version");//-

return 0;

}
}

Since we can include arbitrary Perl code in the snippets, including imports of external
libraries and code, this framework provides a very general way of code preprocessing.
Starfish includes a few more features to support wider management of code base within a
directory, which we will discuss in the next couple of subsections.

1.3.2 Preprocessing Multiple Files

If we want to preprocess a number of Java files in a project, it would be tedious and
error-prone to modify each of them to set them to the appropriate Test or Release version.

9

There are several ways how this problem could be solved and we will describe three of
them:
(1) using Perl require command,
(2) using Make and Starfish -e option, and
(3) using the Starfish starfish.conf configuration file.

(1) Using Perl require command: To have one $Version parameter controlling
many files, we could simply have a Perl file called configuration.pl with the following
content:

#!/usr/bin/perl

$Version = ’Test’; # Test or Release

1;

and one of the first lines in each Java source file would be:

//<? require ’configuration.pl’ !>

In this way, we would have one point of control for the Test or Release version of all files.

(2) Using Make and the Starfish -e option: Starfish has an option -e for initial
Perl code execution, somewhat similar to Perl, and we can use it to set the Version variable.
For example, if we use a Makefile to compile all Java files in a project, we could add a
preprocessing command for each of them in the following way in the Makefile:

VERSION=Test

#VERSION=Release

simple.class: simple.java

starfish -e=’$$Version="$VERSION"’ $<

javac $<

We would again have one point of version control, this time in the Makefile.

(3) Using the Starfish starfish.conf configuration file: The idea of using a Perl
configuration file, as shown in (1), is so common in many situations that we use a standard
name for the configuration file called starfish.conf to include this information. Similarly
to (1), the contents of the file starfish.conf would be:

#!/usr/bin/perl

$Version = ’Test’; # Test or Release

1;

and one of the first lines in each Java source file would be:

//<? read_starfish_conf !>

10

This is the common way to represent per-directory configuration in Starfish. One impor-
tant difference between this approach and the earlier approach with the standard Perl
configuration file (1) is that read starfish conf behaves in a special way. Namely, the
command read starfish conf will look for a file named starfish.conf in the current
directory; if found, it will then look for the same named file in the parent directory. Again,
if it is found, it will look into the parent of the parent directory and so on until it cannot
find a file with that name, or until it reaches the top directory. After that, it will execute,
or more precisely require in the Perl terminology, all found files starfish.conf from
top to bottom. Each file is executed in its own directory as the current directory. This
provides for a hierarchical per-directory configuration. A similar process is used sometimes
in the system of Makefile in a project with multiple directories [8], and in the Imake system
for Makefile generation.[3, 32]

1.3.3 Replace Mode

Finally, if we want to produce a version of Java code without preprocessing code, we can
use the Starfish replace mode. In this mode, the preprocessing code is removed as well
as markup around the generated code. We must specify an output file in the replace
mode because we normally do not want to permanently loose the preprocessing code. For
example, if we run he following command:

$ starfish -replace -o=release/simple.java simple.java

on the above file in which $Version variable is set to the value "Release", the resulting
file release/simple.java would contain the following contents:

/**

A simple Java file.

*/

// Uncomment version:

public class simple {

public static int main(String[] args) {

System.out.println("Release version");

return 0;

}

}

With this, we would like to finish this introductory Starfish example.

11

1.4 The Name of the Game

The parts of Starfish system were developed from 1998, and then in 2001 I searched for
other systems that would have features that I needed and have been working on. I did not
find a good match, but there were a number of systems with with some similarity. The
closest one was ePerl [4] system created by Ralf S. Engelshall in 1998, implemented in C
but using an installed Perl system. There was also a Perl implementation of the same ePerl
system by David Ljung Madison [15]. The system was meant to be used for at least two
different text styles: plain text and HTML, and its vision and philosophy were generally
very close to my goals. However, it was not a close enough match, so I started a new
project, and for a lack of better name, I called it SLePerl, which was short for “Something
Like ePerl”. At some point during 2001, a friend of mine at the graduate school asked
“What is SLePerl!?” and we started pondering about the better name. Since the system
runs on Perl code snippets in text, a metaphor could be a shellfish with embedded pearls.
We agreed that Oyster sounded like a great name, but there was actually (yet another)
Perl module for embedded Perl called Text::Oyster [16]. Starfish seemed to be a good
name, since it feeds on shellfish, with an exception that the system Starfish feeds on Perl
snippets within text. The module Text::Starfish was created in 2002 and uploaded to the
CPAN soon after. It was described in an article in the Perl Journal in 2005. [12]

1.5 Overview

After this introductory chapter, in Chapter 2 we discuss background and related work;
Chapter 3 presents user documentation, Chapter 4 describes the system design, and Chap-
ter 5 gives more starfish details for reference, and Chapter 6 is a conclusion. Appendix A
contains the POD documentation. This documentation is written as a part of code and
is included in the man page as well. As such, it is meant to be a reference that may be
frequently needed during coding and actual use of Starfish.

12

Chapter 2

Background and Related Work

We will describe in this chapter some background information on Preprocessing and
Text-Embedded Programming (PTEP), and some existing related work in this area. The
PTEP area does not exist as a recognized coherent area, but there has been a lot of
fragmented related work within the context of different programming languages, and
different applied area of Computer Science, such as in web systems development (PHP,
ASP, JSP), software development (C preprocessor, make, imake), electronic publishing
(TEX, LATEX), and machine learning and data science (Jupyter).

Text and text files: We define text to be any string of characters, generally including
the new-line character, and it will typically be saved in a file, which we call a text file. We
will assume characters to come from the ASCII set, but they may include extended ASCII
(i.e., numerical values from 0 to 255), or they may have UTF-8 encoding, so characters
may be from the Unicode set. A text is usually created manually in a plain-text editor,
such as emacs or vi in Linux or other Unix-like systems, or notepad in Windows OS. If
the text follows certain formal rules (grammar), we will say that text is in certain style.
Otherwise, if we do not recognize a particular formal grammar of the text, we will say
that text has a default style. It could be for example general natural language text, such
as English, or any kind of text that is not on our list of recognized styles. We will also
talk about specific styles, such as the C-program style, if the text is a program in the C
programming language, a Java style, an HTML style, LATEX style, and similar.

Text preprocessing: We define text preprocessing to be an operation that takes text as
input and produces a similar text as output, and it serves as a way to automate manual
editing of the text. Again, this is not a very precise definition, an we will have to rely on
some of our common sense and experience in recognizing what constitutes preprocessing.
The name “preprocessing” comes from the idea that this operations does not change the
main style of the text, and it is done before any proper processing designed for this style
of text, such as compilation of a C program, rendering of an HTML page, or translating
a LaTeX text into a PDF document. A typical representative preprocessor is the C
programming language preprocessor [5, 31].

13

2.1 Text-Embedded Programming

We define text-embedded programming as a form of computer programming where program-
ming source code is embedded in text of arbitrary style, and this code can be executed in
place; i.e., in the original embedded context.

One could argue that any programming source code is embedded, since code is generally
mixed with documentation comments, but there is a significant conceptual difference in
thinking about a text file as a program with comments, rather than a text of arbitrary
style, with some code snippets inserted. We also leave some freedom in how the code
snippets are executed, to what purpose, or how they interact with the surrounding text.
However, we will see very soon some typical usage for such snippets. Before that, let us
define some notions in this model.

In text-embedded programming, programming source code is embedded in text as a
sequence of continuous text segments. These segments are sometimes called code snippets,
active code, or live code. The text outside the segments is called outer text. The code
snippets are usually easily recognizable by defined text delimiters, but depending on the
rules that we use, any text can be recognized as a snippet. This is why the name active
code is very appropriate: The TeX system uses a labeling of all characters at run-time
that can denote any character to be an ‘active’ character, and as such initiate special
processing after the system reads this character. This character is also sometimes called
an escape character. A similar generalized approach is adopted in Starfish, in which the
active code is recognized by hooks.

One of the first examples of text-embedded programming was the TEX typesetting
system developed by Knuth, released in 1978. [13] The system processes text and prepares
it for typesetting pages for print, but in the process it recognizes TEX commands by
detecting the escape backslash character (,\), i.e., an active character, which triggers
special execution behaviour based mostly on macro expansions. This macro expansion
model can be regarded as a computation model; i.e., model for code execution, but it
is difficult to learn for coding purposes as indicated by the author itself. There were
approaches to developing TEX preprocessors in other languages such as Lisp, as published
by Iwesaki in 2002 [9].

Text-Embedded Programming is particularly popular and useful in the context of
HTML documents. The HTML language was after its design mostly used for creation of
static documents, viewable and browsable by users, and a very natural way to make the
documents dynamic through programming is by inserting code snippets in HTML pages.
After execution of the snippets, they are replaced with the generated text output, and the
resulting page is used for viewing and browsing. This model is used in the very popular
PHP language [19], and also in ASP (Active Server Pages) [29] and JSP (JavaServer
Pages) [28].

The code snippets are marked in text with starting and ending delimiters, which are
arbitrary small strings. Other than simple markers for snippets, we can think of them as
escape sequences that toggle on and off code processing. For example, the string delimiters
are “<?” and “?>” or “<?php” and “?>” in PHP, “<\%” and “\%>” in ASP, and “<?” and

14

“!>” in ePerl. During processing, the text outside the code snippets is left intact, while the
code snippets are evaluated and the evaluation results are used to replace the snippets.
For example, in PHP, we could prepare an HTML document such as:

<html><head><title>PHP Test</title></head>

<body>

<?php echo ’<p>Hello World</p>’; ?> </body></html>

where we show snippet delimiters in red, and the snippet itself in blue color. After
processing with the PHP interpreter, the following output would be produced:

<html><head><title>PHP Test</title></head>

<body>

<p>Hello World</p>

</body></html>

where we show the generated output in the green color. Embedding the code in this way
is sometimes called escaping because a starting delimiter, such as “<?” serves as an escape
sequence, triggering special processing of the snippet. Another kind of escaping, referred
to as the advanced escaping in PHP is illustrated with the following example:

Good <?php if ($hour < 12) { ?> Morning <?php } else { ?> Evening

<?php } ?>

We will refer to this kind of escaping as inverted escaping. Inverted escaping can be
interpreted in the following way: The complete input text is treated as code in which the
plain text, i.e., the non-code text or outer text, is embedded between ‘?>’ and ‘<?php’
delimiters and it is translated into an ‘echo "string";’ statement; and similarly, any part
of the form ‘?> plain text <?’ is interpreted as the statement:

echo " plain text ";

An implicit delimiter ‘?>’ is assumed at the beginning of the text and an implicit delimiter
‘<?php’ is assumed at the end of text. Although this type of escaping is relatively easy to
implement, we do not use inverted escaping in Starfish since its benefits are not very clear.
On the other hand, inverted escaping does not follow the principle that each snippet should
be a well-defined block of code. If we want large pieces of outer text to be conditionally
included or excluded, Perl offers many string delimiting options for large text segments,
such as q/.../ and <<’EOT’, which can be used in place of inverted escaping.

2.2 Perl-based Embedded Programming

We will describe here some previous work on Perl-based embedded programming. Our
vision for universal PTEP is not that it is a major characteristic of a programming language,
but it should be an orthogonal framework that allows several programming languages as
options.

15

The Perl programming language is particularly suitable for implementation of text-
embedded capability due to its string-processing functionalities, and its ability for run-time
code interpretation and execution (the ‘eval’ function).

In 1998, when the work on Starfish started, there was a system that that partially
implemented needed functionality — it was called ePerl (Embedded Perl Language)
by Ralf S. Engelshall.[4] The language ePerl was developed in the period from 1996 to 1998.
It is an embedded Perl language in the sense that we described, but ultimately there were
several reasons why it did not fit needed requirements: (1) it seemed to be too heavy-weight,
(2) it did not support the update mode, that will be described in the next chapters, and
(3) it does not the universal PTEP approach with multiple text styles. Other authors [15]
also noted that ePerl is heavy-weight: The language ePerl was a binary package created by
modifying the Perl source code and requiring compilation during installation. We prefer a
more light-weight solution that relies on the standard Perl, and our solution is installed as
a Perl module.

For example, David Ljung Madison developed an “ePerl hack” [15] which is a Perl
script of some 1400 lines that has functionality similar to ePerl.

Perl Templating

Textual templates are a very natural concept and a core idea in Perl. From the start,
Perl had textual “FORMATS” in addition to formatting function such as sprintf and
variable interpolation in strings. It is always tempting to extend this into more elaborate
templates, which are then easily extended to have added embedded Perl code, and then
we can talk also about text-embedded programming. A review of a book about one of the
most popular such Perl extensions, the Template Tool toolkit [1], it is stated:

Among the many different approaches to “templating” with Perl—such as Em-
bperl, Mason, HTML::Template, and hundreds of other lesser known systems—
the Template Toolkit is widely recognized as one of the most versatile.

I wonder if “hundreds” is really true, but it could easily be. Out of those hundreds, we
will try to at least mention as many as I could come across in this section.

Text::Template [2] by Mark Jason Dominus is another Perl module with similar
functionality. It is a very popular module designed to “expand template text with embedded
Perl”, created in 1995 or 1996 and maintained with contributions by many users until now.
An interesting and probably independent similarity is that Starfish uses $O as the output
variable, while $OUT is used in Text::Template. The default embedded code delimiters in
Text::Template are ‘{’ and ‘}’, with an additional condition that braces have to be properly
nested. For example, ‘{{{"abc"}}}’ is a valid snippet with delimiters. The module allows
the user to change the default delimiters to other alternative delimiters. The philosophy of
Text::Template module has a lot of similarity with Starfish, however the Text::Template
module is primarily meant to be used in templating style; which means that a template file
is created as a more passive object and it always requires a handling Perl script to generate
the output target file. An additional difference is that the Text::Template module does

16

not support the update mode. The use of default delimiters creates issues with JavaScript
code, although there are workarounds. The system is not applied to many text styles other
than plain text and HTML.

Another well-known Perl module HTML::Mason [21], authored by Jonathan Swartz,
Dave Rolsky, and Ken Williams, can also be seen as an embedded Perl system. It is a
larger system with the major design objective to be a high-performance, dynamic, web-site
authoring system.

A relatively minimalistic approach is used in development of the module Text::Oys-
ter [16] by Steve McKay in the period 2000–3. The module is template module for
evaluating Perl embedded in text between delimiters ‘<?’ and ‘?>’.

HTML::EP [24] is another Perl module for embedding Perl into HTML. Its specific
approach is that code delimiters are HTML-like tags that start with ‘ep-’. For example,
comments are delimited by <ep-comment> and </ep-comment>, and active code is delimited
with tags <ep-perl> and </ep-perl>. The last value in the embedded code is the generated
string. The module is meant to be used in a dynamic way over the Apache web server and
the use of Apache module mod-perl, so the documentation gives a nice overview of how to
set up a Perl module that supports embedded programming to run efficiently in this setting.
The set of tags is further extended, so it includes <ep-email> for generating emails from
a web page, <ep-database> and ep-query for working with a database, <ep-list> for
generating HTML lists, then conditionals, and so on. It is an interesting idea that in text
embedding like this we can modify the language to be simpler in some situations than
Perl, but it is still not clear that it is justified to introduce all these new constructs, when
equivalent Perl code exists.

Mojolicious [17] is a Perl web framework with its template language [18] for embedded
Perl. It uses <% and %> as the code delimiters, with some interesting features, such as
syntactic shortcuts, such as using <%= and %> to produce output, or capturing mode for
collecting segments into a variable.

Template Toolkit (1996–2014) [22, 23] is a template processing system, which is
a collection of Perl modules. It is designed in the “input-agnostic” way, as stated in
the documentation, which in our terminology means that it works with different text
styles, with the following ones listed: HTML, XML, CSS, JavaScript, Perl code, plain
text, and so on. However, it is mostly used to generate static and dynamic web content.
It uses the replace mode of operations, as most other template systems. The starting and
ending code delimiters are %[and %], although they can be changed. It allows embedded
Perl, but it seems to mostly use its own templating language. It is very popular, with
a book published about it [1]. Compared to Starfish, while it does aim at the different
text styles, it supports only replace mode, it relies on its own templating language, and
although it allows changing starting and ending code delimiters, it does not seem to allow
multiple hook styles. The Template Toolkit provides an extensive language with focus on
templates, and it could be used, but it is not meant for preprocessing and text-embedded
programming.

Embperl (1997–2012) [20] is an embedded Perl framework for building web sites under
the umbrella of the mod_perl, the Apache web server Perl module. It completely written

17

in C and optimized for delivering online content. Embperl has the following snippet
delimiters:
[- and -] are the main delimiters for executing code,
[+ and +] are delimiters for code with an output value,
[! and !] are delimiters for code to be executed only once,
[$ and $] are delimiters for templating meta-commands, which are used in the inverted
escaping mode; i.e., combining outer text with code.

perlpp — Perl preprocessor (2013–2018) https://metacpan.org/pod/distribution/
Text-PerlPP/bin/perlpp has goal to process Perl code within any text file. It uses de-
limiters <? and ?>, with some additional flavours and specific PerlPP commands. It uses
the replace mode.

Text::EP3 — The Extensible Perl PreProcessor (1998–2006) https://metacpan.
org/pod/Text::EP3 uses replace mode with delimiters starting with @ at the beginning
of line, such as @perl_begin and @perl_end.

Basset::Template — my templating system (2004–7) https://metacpan.org/

pod/Basset::Template is a template system in replace mode, which uses delimiters <%

and %>, and also %% and new line.
ExtUtils::PerlPP — A Perl Preprocessor (1995–2001) https://metacpan.org/

pod/ExtUtils::PerlPP a preprocessor using patterns such as ~~version~~ with intention
to be used with MakeMaker. It uses the replace mode.

PML — (PML Markup Language) (1999–2000) https://metacpan.org/pod/

PML a template processor in the replace mode aimed for HTML, with syntax such as
{$title} and special commands such as @if.

Preproc::Tiny — Minimal stand-alone preprocessor for code generation
using Perl (2016) https://metacpan.org/pod/Preproc::Tiny a preprocessor in replace
mode which originated from the need to generate C++ code. It uses delimiters such as @@
and new-line, and [@ and @]. It uses $OUT variable for the output.

iperl — bring any text documents alive with bits of embedded Perl (2000)
https://metacpan.org/pod/iperl and https://metacpan.org/pod/Text::iPerl is an
embedded Perl processor with various styles (using function set_style). It is invoked
using command include, include_filehandle, or include_string. The code delimiters
may be changed, but one example uses starting with ! to the end of line, or !{ and }!

and some variations.

In Summary

Starfish is a lighter-weight system than eperl or Mason, but it is more flexible and universal
than Text::Template, the ePerl hack, and HTML::EP. Starfish has a large coverage goal
of covering more text styles than other systems, provides other unique innovations, such
as more flexibility in defining active code detection patterns, per-directory configuration,
update mode, and full embedding when compared to some systems. Under full embedding
we refer to capability that all functionality and customizability, such as adaptation of
patters, can be achieved with code inside the snippets embedded in the text file.

18

https://metacpan.org/pod/distribution/Text-PerlPP/bin/perlpp
https://metacpan.org/pod/distribution/Text-PerlPP/bin/perlpp
https://metacpan.org/pod/Text::EP3
https://metacpan.org/pod/Text::EP3
https://metacpan.org/pod/Basset::Template
https://metacpan.org/pod/Basset::Template
https://metacpan.org/pod/ExtUtils::PerlPP
https://metacpan.org/pod/ExtUtils::PerlPP
https://metacpan.org/pod/PML
https://metacpan.org/pod/PML
https://metacpan.org/pod/Preproc::Tiny
https://metacpan.org/pod/iperl
https://metacpan.org/pod/Text::iPerl

2.2.1 PTEP in the Update Mode

We can have generally different ways in which embedded code executed and how its output
is used. For example, even the concept of Literate Programming [27] introduced by Knuth
in 1984 [14] can be considered text-embedded programming, although the code is only
executed after it is automatically gathered into the source files, and then compiled.

All the systems that we discussed until now in this section, support a more of execution
that we will call the replace mode. In the replace mode, the code snippets are replaced with
the output of those snippets, and the file produced in this way is either sent over internet
to a browser to be viewed, or saved into a target file. The Starfish system was designed to
support a new mode of operation, called the update mode, from its initial public release in
2001 [11]. This mode was briefly discussed in the Perl Journal article in 2005 [12]. The
main property of the update mode is that rather than replacing the code snippets with
their output, the output is appended to snippets. This has several advantages: (1) we
do not need to set up translation process from source file to target files, which makes the
process simpler; (2) it provides an easy inspection of the embedded code and the output it
produces, which is very convenient in prototyping process, for example; and (3) it provides
an easy way for the system to be used as a preprocessor for text files of arbitrary style.
We will describe in more detail how the update mode works, but it should be mentioned
in the related work since a well-known system Jupyter [10, 30], released in 2015, operates
in the update mode. The Jupyter system is used to produce so-called Jupyter Notebooks,
which are JSON-type files with a mixture of plain text and embedded Python code. The
execution of the notebook appends the output of embedded code immediately to the code.
This is used to create documents in which the code and results of code execution are
intermixed. We would describe this as text-embedded programming with the update mode,
with a minor exception that Jupyter Notebook itself is not in plan-text format but needs
a viewer software to be presented in that way.

19

Chapter 3

Starfish Usage and Design

This chapter describes some implementational topics regarding Starfish.

3.1 Modifying Starfish to Different Text Styles

As we mentioned earlier, we call text styles different types of plain text that we want to
process with Starfish. The default style is a generic plain text, where we assume that the
character ‘#’ denotes a start of a line comment, since it is used in many contexts. Some
other text styles are java for Java source code, html for an HTML file, etc. The term file
type is usually used to distinguish the styles that we just mentioned, but since we assume
that different styles may mix in the same file, we will use the term text style.

The main parameters that need to be adapted for each new style are the patterns
used to detect active code, the output delimiters, the line comment that may be used to
comment out active code, and possibly other parameters, such as optionally snippet code
preprocessing, snippet evaluation, or output modification. For example, Figure 3.1 shows
active elements of the Java code used previously with emphasized character strings used or
generated by Starfish. First, in order to detect active code (code snippets), Starfish relies
on the begin and end delimiters of the code snippets, which we call hooks.1 In Figure 3.1,
the begin-end hook consists of the string pair (‘//<?’, ‘!>’). In addition to this hook,
there is another hook (‘<?’, ‘!>’), which is not used in this example. Even though the
first hook may seem redundant, it makes a difference in the replace mode, where we want
the snippet output to replace the line comment as well. Starfish operates with a list of
hooks, which can be modified at any time. In addition to the begin-end delimiter pairs,
hooks can also be regular expression hooks, which provide more flexibility. Starfish is
implemented in the object-oriented way, so during text processing there is always a current
Starfish-type object, accessible as the variable $Star, which contains the current state of
parsing, the list of active hooks, and other parameters. The Starfish parser always looks
for the leftmost shortest match in the list of hooks in order to locate the next code snippet.
Once the code snippet is identified, the parser will also check for the optional immediately

1The term hook is inspired by a similar use of hook in Emacs.

20

/**

A simple Java file.

*/

// Uncomment version:

//<? # $Version = ’Test’; !>

//<? $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>//+

System.out.println("Test version");//-

return 0;

}
}

simple.java

Begin delimiters
End delimiters

Code Snippets

Line comments

Output delimiters

Output

Figure 3.1: Illustration of Starfish parameters in Java code with active Starfish code

21

following snippet output (only in the update mode), and remove it.
The output is detected using the Output delimiters. Since the output delimiters may

include a generated number in order to avoid conflict with the output, the output delimiters
parameter (OutDelimiters) is actually an array of four strings: ("//", "+\n", "//", "-\n"),
where the \n denotes the new-line character, and where concatenation of the first two
strings is the default starting output delimiter, and the concatenation of the second two
strings is the ending output delimiter. If there is a conflict with the snippet output, a
number is inserted between the two strings to form non-conflicting delimiters. The code
snippet should be commented out from the surrounding text, this is one reason why we
need information about the line comment indicator (parameter LineComment). Line
comment indicators are removed during the code preparation, the code is evaluated, and
the contents of the variable $O is used to determine the generated output. To be more
precise, it is the variable $::O, since it is defined in the main name space of Perl.

All these parameters, hooks, output delimiters, line comment, as well as the functions
for code preparation and evaluation can be modified to accommodate different text styles.
We can adjust these parameters ad hoc in any snippet or configuration file to adapt to a
new text style. A number of text styles (e.g., java, html, perl, python, and makefile)
are already provided in Starfish and we can set them by calling the set_style function.
Starfish automatically chooses an appropriate style at the beginning based on the file
extension. If the file extension is unknown, Starfish will set up the default style.

Many text styles, such as Perl, Makefile, shell scripts, procmail scripts, Python, and
configuration files, use the hash symbol (#) as the line comment, so this line comment is
chosen for the default Starfish style. Due to a specific syntax in Makefiles and Python,
where the generated output indentation is important, the output indentation is adjusted
according to the indentation of the lines in the code snippet in those built-in styles.

3.1.1 Default Style Example: Makefiles

If a file name extension cannot be recognized, the Starfish will process text in the default
style, which relies on # as the line comment string, with the standard hooks and output
delimiters. Makefiles are recognized as a separate style, but it is very close to the default
style so we will look a Makefile as an example. The Makefiles are per-directory recipe
files for the system make [25, 7], which is used to run appropriate commands to build files,
including code compilation and linking, testing, and other common tasks done using the
command-line interface. It can be used to efficiently compile C source files that need to
be compiled, LATEX files to be processed into PDF, figures to be produced into images, etc.
Writing rules and dependencies for Makefiles can be tedious, and this is why make provides
some help with its own advanced rules. These advanced rules can be complex because they
are a language of its own, they are not always portable, and they do not provide flexibility
of a general programming language. One attempt to address this problem was the Imake
system [32], which runs C preprocessor on a Makefile before passing it to make. Some
languages provide their own Makefile generators for certain situations, such MakeMaker
for Perl, but in a more general sense we would like to have a Makefile preprocessor that

22

would be adaptable for handling many different projects, such as web site deployment, or
LaTeX typesetting.

As an example, let us say that we want to have a Makefile that would adapt to any
directory with a set of Java files, so that after running make all files that need to be
compiled are compiled. We could write a Makefile consisting solely of the following Starfish
snippet:

#<? @javafiles = <*.java>;

echo "all: @javafiles\n";

echo map { s/\.java$//; "$_.class: $_.java; javac $_.java\n" }
@javafiles;

#!>

The code above finds all .java files in the current directory and includes them into
compilation. After running:
$ starfish Makefile

assuming that our directory contains files A.java, B.java and C.java, the Makefile is
updated as follows:

#<? @javafiles = <*.java>;

echo "all: @javafiles\n";

echo map { s/\.java$//; "$_.class: $_.java; javac $_.java\n" }
@javafiles;

#!>#+

all: A.java B.java C.java

A.class: A.java; javac A.java

B.class: B.java; javac B.java

C.class: C.java; javac C.java

#-

This is a ready Makefile that would cause the command make to run necessary compila-
tions.

3.1.2 HTML Style Example

In our second example, we will show the HTML Starfish style. The HTML style in Starfish
(html) is set up by setting the begin and end hook delimiters to be ‘<!--<?’ and ‘!>-->’,
the output delimiters to be ‘<!-- + -->’ and ‘<!-- - -->’, or more precisely as the
four-tuple ("<!-- +", " -->", "<!-- -", " -->"), and by not having line comments.
In this way, the Starfish code is properly commented out and not visible in the browser in
the update mode of the HTML file. The code would still work in the replace mode, in
which case the target HTML file would be generated by replacing the code snippets with
their output, in the same style as PHP, JSP, and ASP. Starfish can be run in the dynamic
way using the Apache web server, for example, where the output files would be produced
“on-the-fly”, again in the same fashion as PHP.

23

As an HTML example, let us consider the following short HTML file with embedded
Starfish code, which can be used to write a short blog:

<!--<? read_starfish_conf;

$date_created = ’July 4, 2020’;

$title = ’My sample blog’;

echo blog_header(); !>-->

<p>This is an example blog post. Below, you can find some source

code:

<!--<?

$_= <<’EOT’;

/**

A simple Java file with Test & Release

*/

// Uncomment version:

//<? $Version = ’Test’; !>

//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>

//etc...

EOT

echo "<PRE>".htmlquote($_)."</PRE>";

!>-->

We have a short code snippet at the beginning to generate start of the HTML file using
the function blog_header, which is defined in the file starfish.conf so that we can use
the same function for all blog posts. The function definition is as follows:

sub blog_header {

return "<html><title>$title</title><body>\n".

"Blog created: $date_created
\n".

"Last update: ".file_modification_date()."\n".

"<h1>$title</h1>\n";

}

The blog_header function uses the Starfish-provided function file_modification_date,
which supplies the last modification date of the file. It is interesting to note that Starfish

24

itself modifies the file; however, if there are no new update changes since the last time
we ran Starfish, new runs of Starfish will not incorrectly update time to the time of the
newest run.

We want to include Java source code in HTML. This can be done using the <PRE>

tag, however HTML still treats characters < and & in a special way, so we are using
Starfish-provided function htmlquote to escape those characters.

If we run Starfish on this file with:

$ starfish blogexample.html

the file will be updated as follows:

<!--<? read_starfish_conf;

$date_created = ’July 4, 2020’;

$title = ’My sample blog’;

echo blog_header(); !>--><!-- + --><html><title>My sample blog</title><body>

Blog created: July 4, 2020

Last update: July 4, 2020

<h1>My sample blog</h1>

<!-- - -->

<p>This is an example blog post. Below, you can find some source

code:

<!--<?

$_= <<’EOT’;

/**

A simple Java file with Test & Release

*/

// Uncomment version:

//<? $Version = ’Test’; !>

//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>

//etc...

EOT

echo "<PRE>".htmlquote($_)."</PRE>";

!>--><!-- + --><PRE>/**

25

A simple Java file with Test & Release

*/

// Uncomment version:

//<? $Version = ’Test’; !>

//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $O = " ".($Version eq ’Test’ ?

// ’System.out.println("Test version");’ :

// ’System.out.println("Release version");’);

//!>

//etc...

</PRE><!-- - -->

This is the output in the default Update mode. The Replace mode would produce a more
clean HTML source without Starfish source, which could be done for a production web
site with the following command as an example:

$ starfish -replace -o=~/public_html/blog.html blogexample.html

3.2 Text Styles

Starfish has a number of predefined styles which are automatically set based on the input
file extension, or can be manually set using the function set_style. The set of predefined
styles are: HTML (style html, extensions .html and .htm, case insensitive), HTML
templating style (style html.sfish, extensions .html.sfish or .sf, case insensitive),
TEX and LATEX (style tex, extensions .tex and .latex, case insensitive), Java (java),
Makefile (makefile), PostScript (ps), Python (python), and Perl (perl).

3.2.1 HTML-Sfish Style (html.sfish)

The HTML style is created with the update mode in mind, which means that we need to
carefully protect any embedded code from being directly viewable by a Web browser. This
is achieved by keeping it always within HTML comment delimiters. This is important in
order not to unintentionally break the HTML page layout, but, of course, a curious reader
can always see it by viewing the HTML source. We often want to use the HTML style in
the replace mode, either in generating static or dynamic web sites, and since we do not
have to care in the replace mode about commenting out the snippet code, we can introduce
some additional simple hooks, such as using delimiters <? and !>, and commenting lines
with # at the very beginning of a line. For this purpose, we introduce the html.sfish

style, which is automatically detected by the file name extension .html.sfish.

26

Using # as a line comment in the html.sfish style makes it easy to comment out some
HTML pieces from being produced, or for example, we can use the following emacs editor
command in the source:

#-*-mode: HTML; compile-command: "make all"; -*-

<!--<? read_starfish_conf();

$creationyear=2020; $title=’Vlado Keselj: Mail Address’;

echo &myheader1();

!>-->

And so on...

3.3 Hooks

Starfish uses the concept of a “hook” (or triggers) and evaluators to initiate processing
on a text. The name “hook” is inspired by a similar term used in Emacs. For example,
the delimiters ‘<?’ and ‘!>’ represent a hook, which is associated with an evaluator that
will evaluate the code between the delimiters and produce the result that will replace the
hook. In the update mode, the code will be replaced with something like:
<? code !>#+

...output

#-

while in the replace mode, the code is replaced with “...output,”.
Each text style includes one or more hooks for that style, but we can also modify

Starfish hooks at any time. The main method for adding hooks is add_hook and if it used
as a function it will add hook to the current $::Star object. There are hooks of several
types, and the hook type is specified as the first argument (a string) of the add_hook

method. The following are examples of some hook types:

• string — string replacement,
• be — begin and end snippet delimiters,
• regex — regular expression recognized active code
• ht:re2 — a special regular expression based hook for Python and Makefile styles,

which need information about the current indentation

Hook type ‘string’: The hook type string is a simple hook type, which specifies that a
string should be replaced with another string. For example, after the following embedded
code:

<?starfish

add_hook(’string’, ’<code>App::Utils</code>’,

’’.

’<code>App::Utils</code>’); ?>

any occurence of <code>App::Utils</code> is replaced with:

27

<code>App::Utils</code>

Hook type ‘be’: The hook type be is a standard hook with ‘begin’ and ‘end’ delimiters,
which can be strings or regular expressions. For example, the following code sets up some
hooks similar to the .html.sfish style:

add_hook(’be’, ’<!--<?’, ’!>-->’);

add_hook(’be’, qr/<\?starfish\b/, ’?>’);

add_hook(’be’, qr/<\?sf\b/, ’!>’);

The second and third hooks user regular expressions for the begin delimiter in order to
use \\b end-of-word anchor. This means that something like:

<!!!?sf_not a hook!>

Hook type ‘regex’: The hook type regex is a single regular expression hook, which
may capture function parameters using regular expression groupings.

Hook type ‘ht:re2’: The hook type ht:re2 is a special regula expression hook created
to handle Python and Makefile styles, since they give significance to identation and it
should be maintained in the snippet output.

Implementation note: The regex (regular expression) hooks pass captured substrings
as arguments to the replacement function. If the whole captured string ($&) is needed, it
can be obtained from the $self->{currenttoken} field.

3.4 Iterative Processing

In the default mode of processing, Starfish reads input file, processes it, and writes it back
to the output file if the output is different. The processing of the text could be repeated.
The number of iterations is set by default to 1, but it could be larger. If the number of
iterations is very large, the number of actual iterations could be smaller if a fixed point is
reached earlier. A typical code of setting the number of iterations to 2 is the following:

$Star->{Loops} = 2;

We can read the number of the current loop with $Star->{CurrentLoop}.
In case of replace mode, the iterations are repeated on the original input file and only

in the last iteration the replaced output is produced.

28

3.5 Starfish Processing Model

The typical use of the system is by calling the starfish command, which runs the
starfish_cmd function with arguments being passed from the command line.

The starfish_cmd function creates a Starfish object $sf, translates the options from
the command line into the appropriate settings of the object, and runs the method
$sf->process_files(@tmp), where @tmp contains the names of the files given in the
command line. The function starfish_cmd returns the object $sf at the end.

The method $sf->process_files expects a list of files. Each file is processed and
written out. The main part of processing start with setting $sf->{data} to the file
contents, calling the method $sf->digest(), and writing the processed output, which is
found in $sf->{Out}.

3.5.1 Method digest

The method $sf->digest() mainly consists of a loop which scans the $sf->{data} and
prepares output in $self->{Out}. A custom function defined as reference $sf->{Final}

can be used for final processing of the output.

3.5.2 Method scan

The method _scan is called by the method digest to scan text and find the next token.
It uses the list of hooks to find the first active code. If there is outer text before the active
code, it will return it as a token first and in the next call it will return the active code.

29

Chapter 4

Conclusion

This report give documentation on the system Starfish, an implementation of the concept
of universal Preprocessing and Text-Embedded Programming (PTEP). The report now fairly
well reflects the most important features of Starfish. There are still some undocumented
features, some that should be included, but also some that are experimental. In the
continuation of this report, Appendix A contains the POD (Perl’s Plain Old Documentation
format) documentation provided with the module Text::Starfish. The appendix is
generated with a POD-to-LATEX tool. Compared to the main text of this report, the POD
documentation is written with an attempt to be a good reference document to be used in
typical man-page Unix-style environment.

30

Bibliography

[1] Darren Chamberlain, Dave Cross, and Andy Wardley. Perl Template Toolkit: Scalable
Templating for the Web. O’Reilly Media, Inc., 2003.

[2] Mark Jason Dominus and et al. Perl module Text::Template, 1999-2019 (accessed
Jun 23, 2020). https://metacpan.org/pod/Text::Template.

[3] Paul DuBois. Software Portability with imake. O’Reilly Media, 2nd ed. edition,
September 1996. https://archive.org/details/softwareportabil00dubo.

[4] Ralf S. Engelshall. OSSP eperl: Embedded Perl language, 1996–8 (accessed Jun 23,
2020). http://www.ossp.org/pkg/tool/eperl/.

[5] GCC.GNU.org. The C preprocessor, 2020 (accessed Jun 23, 2020). GNU GCC
Documentation, https://gcc.gnu.org/onlinedocs/cpp/.

[6] GNU.org. GNU M4, 2000-2020 (accessed Jul 2, 2020). https://www.gnu.org/

software/m4.

[7] GNU.org. Gnu make, 2020 (accessed Jul 2, 2020). https://www.gnu.org/software/
make/manual/make.html.

[8] GNU.org. Gnu make: 5.7 recursive use of make, 2020 (accessed Jun 23, 2020).
https://www.gnu.org/software/make/manual/make.html#Recursion.

[9] Hideya Iwesaki. Developing a Lisp-based preprocessor for tex documents. Software:
Practice and Experience, 32(14):1345–1363, 2002.

[10] Jupyter.org. Project Jupyter, 2020 (accessed Jun 22, 2020). https://jupyter.org.

[11] Vlado Kešelj. Perl module text::starfish and starfish: A perl-based system for
preprocessing adn text-embedded programming, 2001–20 (accessed Jul 1, 2020).
https://metacpan.org/pod/Text::Starfish.

[12] Vlado Kešelj. Starfish: A Perl-based framework for text-embedded programming and
preprocessing. The Perl Journal, June 2005.

[13] Donald E. Knuth. The TEXbook. Addison-Wesley, Reading, MA, USA, 1986.

31

https://metacpan.org/pod/Text::Template
https://archive.org/details/softwareportabil00dubo
http://www.ossp.org/pkg/tool/eperl/
https://gcc.gnu.org/onlinedocs/cpp/
https://www.gnu.org/software/m4
https://www.gnu.org/software/m4
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html#Recursion
https://jupyter.org
https://metacpan.org/pod/Text::Starfish

[14] Donald Ervin Knuth. Literate programming. The Computer Journal, 27(2):97–111,
1984.

[15] David Ljung Madison. ePerl (rewrite in Perl), 2001–8 (accessed Jun 23, 2020).
http://marginalhacks.com/Hacks/ePerl/.

[16] Steve McKay. Perl module text::oyster: Evaluate perl code embedded in text, 2000–3
(accessed Jun 23, 2020). https://metacpan.org/pod/Text::Oyster.

[17] Mojolicious.org. Mojolicious: Perl real-time web framework, 2020 (accessed Jul 12,
2020). https://mojolicious.org/.

[18] Mojolicious.org. Mojo::template: Mojolicious perl-ish templates, 2020 (accessed Jul
12, 2020). https://mojolicious.org/perldoc/Mojo/Template.

[19] PHP.net. PHP: Hypertext Preprocessor, 2020 (accessed Jun 19, 2020). http://www.
php.net.

[20] Gerald Richter. Embperl: Building dynamic websites with Perl, 1997–2012 (accessed
Jul 14, 2020). https://perl.apache.org/embperl/.

[21] Dave Rolsky, Jonathan Swartz, Ken Williams, and et al. Perl module html::mason,
1998-2020 (accessed Jun 23, 2020). https://metacpan.org/pod/HTML::Mason.

[22] Andy Wardley. Template toolkit home page, 1996–2014 (accessed Jul 13, 2020).
http://www.template-toolkit.org.

[23] Andy Wardley. Template-toolkit cpan distribution, 1996–2020 (accessed Jul 13, 2020).
https://metacpan.org/release/Template-Toolkit.

[24] Jochen Wiedmann. Perl module html::ep, 1998-2001 (accessed Jun 23, 2020). https:
//metacpan.org/pod/HTML::EP.

[25] Wikipedia.org. Make (software), 1976–20 (accessed Jul 2, 2020). https://en.

wikipedia.org/wiki/Make_(software).

[26] Wikipedia.org. m4 (computer language), 1977-2020 (accessed Jul 2, 2020). https:

//en.wikipedia.org/wiki/M3_(computer_language).

[27] Wikipedia.org. Literate programming, 1984 (accessed Jul 1, 2020). https://en.

wikipedia.org/wiki/Literate_programming.

[28] Wikipedia.org. Javaserver pages, 1999 (accessed Jun 23, 2020). https://en.

wikipedia.org/wiki/JavaServer_Pages.

[29] Wikipedia.org. Active server pages, 2000 (accessed Jun 23, 2020). https://en.

wikipedia.org/wiki/Active_Server_Pages.

32

http://marginalhacks.com/Hacks/ePerl/
https://metacpan.org/pod/Text::Oyster
https://mojolicious.org/
https://mojolicious.org/perldoc/Mojo/Template
http://www.php.net
http://www.php.net
https://perl.apache.org/embperl/
https://metacpan.org/pod/HTML::Mason
http://www.template-toolkit.org
https://metacpan.org/release/Template-Toolkit
https://metacpan.org/pod/HTML::EP
https://metacpan.org/pod/HTML::EP
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/Make_(software)
https://en.wikipedia.org/wiki/M3_(computer_language)
https://en.wikipedia.org/wiki/M3_(computer_language)
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/Active_Server_Pages
https://en.wikipedia.org/wiki/Active_Server_Pages

[30] Wikipedia.org. Project Jupyter, 2015–20 (accessed Jul 1, 2020). https://en.

wikipedia.org/wiki/Project_Jupyter.

[31] Wikipedia.org. C preprocessor, 2020 (accessed Jun 23, 2020). https://en.wikipedia.
org/wiki/C_preprocessor.

[32] Wikipedia.org. imake, 2020 (accessed Jun 23, 2020). https://en.wikipedia.org/
wiki/Imake.

33

https://en.wikipedia.org/wiki/Project_Jupyter
https://en.wikipedia.org/wiki/Project_Jupyter
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/Imake
https://en.wikipedia.org/wiki/Imake

Appendix A

POD Documentation

A.1 NAME

Text::Starfish.pm and starfish - Perl-based System for Preprocessing and Text-Embedded
Programming

A.2 SYNOPSIS

starfish [-o=outputfile] [-e=initialcode] [-replace] [-mode=mode] files...
where files usually contain some Perl code, delimited by <? and !>. Use function

echo to produce output to be inserted into the file.

A.3 DESCRIPTION

Starfish is a system for Perl-based preprocessing and text-embedded programming, based
on a universal approach applicable to many different text styles. You can read the
documentation contained in the file report.pdf for an introduction. For an initial
understanding about how Starfish works, you can think of Perl code being inserted in
arbitary text between <? and !> delimiters, which can be executed in a similar way
as PHP code in an HTML file. Some similar projects exist and some of them are listed
in §A.13. Starfish has been unique in several ways. One important difference between
starfish and similar programs (e.g., PHP) is that the output does not necessarily replace
the code, but it is appended to the code by default.

The package contains two main files: a module file (Starfish.pm) and a small script
(starfish) that provides a command-line interface to the module. The options for the script
are described in subsection ”starfish cmd list of file names and options”.

34

A.4 EXAMPLES

A simple example

Let us have a plain file named example.txt with the following content:

<? echo "Hello world!" !>

In the command line, run the command:

starfish example.txt

If we open the file example.txt, the content will be:

<? echo "Hello world!" !>#+

Hello world!#-

The same effect would be obtained with the code $O = "Hello world!". This way of
updating the file is called the ”update” mode of Starfish and it is the default mode. The
”replace” mode can be used, but then we should have a different output file, as in the
following command:

starfish -replace -o=example-out.txt example.txt

and the content of the file example-out.txt would now be:

Hello world!

The module parameters can be changed, and their default values vary according to the
text style. THese parameters are described in the description of the set style method.

HTML Examples

Example 1

If we have an HTML file, e.g., 7.html with the following content:

<HEAD>

<BODY>

<!--<? $O="This code should be replaced by this." !>-->

</BODY>

then after running the command

starfish -replace -o=7out.html 7.html

the file 7out.html will contain:

35

<HEAD>

<BODY>

This code should be replaced by this.

</BODY>

The same effect would be obtained with the following line:

<!--<? echo "This code should be replaced by this." !>-->

Output file permissions

The permissions of the output file will not be changed. But if it does not exist, then:

starfish -replace -o=7out.html -mode=0644 7.html

makes sure it has all-readable permission.

Example 2

Input file 21.html:

<!--<? use CGI qw/:standard/;

echo comment(’AUTOMATICALLY GENERATED - DO NOT EDIT’);

!>-->

<HTML><HEAD>

<TITLE>Some title</TITLE>

</HEAD>

<BODY>

<!--<? echo "Put this." !>-->

</BODY>

</HTML>

Output:

<!-- AUTOMATICALLY GENERATED - DO NOT EDIT -->

<HTML><HEAD>

<TITLE>Some title</TITLE>

</HEAD>

<BODY>

Put this.

</BODY>

</HTML>

36

Example from a Makefile

LIST=first second third\

fourth fifth

<? echo join "\n", getmakefilelist $Star->{INFILE}, ’LIST’, "\n" !>#+

first

second

third

fourth

fifth

#-

Beside $O, $Star is another predefined variable: It refers to the Starfish object currently
processing the text.

TeX and LaTeX Examples

Simple TeX or LaTeX Example

Generating text with a variable replacement:

%<?echo "

% When we split the probability reserved for unseen characters equally

% among the remaining $UnseenNum characters, we obtain the final estimated

% probabilities:

%"!>

Example from a TeX file

% <? $Star->Style(’TeX’) !>

% For version 1 of a document

% <? #add_hook(’be’,"\n%Begin1","\n%End1",’s/\n%+/\n/g’);

% #add_hook(’be’,"\n%Begin2","\n%End2",’s/\n%*/\n%/g’);

% #For version 2

% add_hook(’be’,"\n%Begin1","\n%End1",’s/\n%*/\n%/g’);

% add_hook(’be’,"\n%Begin2","\n%End2",’s/\n%+/\n/g’);

% !>

%Begin1

%Document 1

%End1

%Begin2

Document 2

%End2

37

LaTeX Example with Final Routine used for Slides

% -*- compile-command: "make 01s 01"; -*-

%<? ##read_starfish_conf();

% $TexTarget = ’slides’;

% sfish_add_tag(’sl,l’, ’echo’);

% sfish_add_tag(’slide’, ’echo’);

% sfish_ignore_outer;

% $Star->add_final(sub {

% my $r = shift;

% $r =~ s/^% -*- compile-command.*\n//;

% $r.= "\\end{document}\n";

% return $r;

% });

% !>

\section{Course Introduction}

Not in slide.

%slide:In slide.

%<sl,l>

In slides and lectures.

%</sl,l>

Example with Test/Release versions (Java)

Suppose you have a stanalone java file p.java, and you want to have two versions:

p_t.java -- for complete code with all kinds of testing code, and

p.java -- clean release version.

Solution:
Copy p.java to p t.java and modify p t.java to be like:

/** Some Java file. */

//<? $O = defined($Release) ?

// "public class p {\n" :

// "public class p_t {\n";

//!>//+

public class p_t {

//-

38

public static int main(String[] args) {

//<? $O = " ".(defined $Release ?

//qq[System.out.println("Test version");] :

//qq[System.out.println("Release version");]);

//!>//+

System.out.println("Release version");//-

return 0;

}

}

In Makefile, add lines for updating p t.java, and generating p.java (readonly, so that
you do not modify it accidentally):

p.java: p_t.java

starfish -o=$@ -e=’$$Release=1’ -mode=0400 $<

tmp.ind: p_t.java

starfish $<

touch tmp.ind

Command-line Examples

The following are the reference examples. For further information, please lookup the
explanations of the command-line options and arguments.

starfish -mode=0400 -replace -o=paper.tex -mode=0400 paper.tex.sfish
In the above line, Starfish is used on top of a TeX/LaTeX file. The Starfish is separated

from the .tex file to keep the source clean. However, a user in this situation may by
mistake start editing the paper.tex file, so we set the output file mode to 0400 to prevent
this accidental editing.

Macros

Note: This is a quite old part of Starfish and needs a revision. Macros are a form of code
folding (related terms: holophrasting, ellusion(?)), expressed in the Starfish framework.

Starfish includes a set of macro features in an experimental phase. There are two modes,
hidden macros and not hidden, which are indicated using variable $Star->{HideMacros},
e.g.:

starfish -e=’$Star->{HideMacros}=1’ *.sfish

starfish *.sfish

Macros are activated with:

<? $Star->defineMacros() !>

39

In Java mode, a macro can be defined in this way:

//m!define macro name

...

//m!end

After //m!end, a newline is mandatory. After running Starfish, the definition will
disapear in this place and it will be appended as an auxdefine at the end of file.

In the following way, it can be defined and expanded in the same place:

//m!defe macro name

...

//m!end

A macro is expanded by:

//m!expand macro name

When macro is expanded it looks like this:

//m!expanded macro name

...

//m!end

Macro is expanded even in hidden mode by:

//m!fexpand macro name

and then it is expanded into:

//m!fexpanded macro name

...

//m!end

Hidden macros are put at the end of file in this way:

//auxdefine macro name

...

//endauxdefine

Old macro definition can be overriden by:

//m!newdefe macro name

...

//m!end

40

A.5 PREDEFINED VARIABLES AND FIELDS

$O

After executing a snippet, the contents of this variable represent the snippet output.

$Star

More precisely, it is $::Star. $Star is the Starfish object executing the current code snipet
(this). There can be a more such objects active at a time, due to executing Starfish from
a starfish snippet. The name is introduced into the main namespace, which might be a
questionable decision.

$Star->{Final}
If defined, it should be an array of CODE references, which are applied as functions on
the final output before writing it out. These are used as final routines, typically to add or
remove some of the first lines or finals lines. Each function takes input as a parameter and
returns it after processing. The variable should accessed using the method add final.

$Star->{INFILE}
Name of the current input file.

$Star->{Loops}
Controls the number of iterations. The default value is 1, but we may want to repeat
starfishing the text several times, or even until a fix-point is reached. For example, by
setting the number of Loops to be at least 2, as in:

$Star->{Loops} = 2 if $Star->{Loops}<2;

we require Starfish to proces the input in at least two iterations.

$Star->{Out}
Output content of the current processing unit. For example, to use #-style line comments
in the replace Starfish mode, one can make a final substitution in an HTML file:

<!--<? $Star->{Out} =~ s/^#.*\n//mg; !>-->

It is important to have in mind that the contents of this variable is the output processed
so far, so any final output processing should be done in a snippet where no new output is
produced.

41

$Star->{OUTFILE}
If option -o=* is used, then this variable contains the name of the specified output file.

A.6 METHODS

Text::Starfish->new(options)

The method for creation of a new Starfish object. If we are already processing within a
Starfish object, we may use a shorter variant $Star->new().

The options, given as arguments, are a list of strings, which may include the following:
-infile=* Specifies the name of the input file (field INFILE). The file will not be read.
-copyhooks Copies hooks from the Star object ($::Star). This option is also available

in loadinclude, getinclude, and include, from which it is passed to new. It causes the
new object to have similar properties as the current Star object. It could be generalized
to include any specified object, or to use the prototype object that is given to the
constructor, but there does not seem to be need for this generalization. More precisely,
-copyhooks copies the fields: Style, CodePreparation, LineComment, IgnoreOuter, and
per-component copies the array hook.

$o->add final($func ref)

Adds the function referred to by $func ref to the list of functions to be executed on the
output at the end of processing. See also the parameter $Star->{Final}.

$o->add tag($tag, $action)

Normally used by sfish add tag by translating the call to $Star->add tag($tag,

$action). Examples:

$Star->add_tag(’slide’, ’ignore’);

$Star->add_tag(’slide’, ’echo’);

See sfish add tag for a few more details.

$o->add hook($ht,...) -- (and function add hook)

Adds a new hook. The first argument is the hook type, which is a string. If it is used as a
function, it will run on the $::Star object. The following is the list of hook types with
descriptions:

string, somestring, replacementstring

A simple hook to replace a string with another string. In the update mode, we must
take care that the string to be replaced is commented out if needed. For example,
after the following embedded code:

42

<?starfish

add_hook(’string’, ’<code>App::Utils</code>’,

’’.

’<code>App::Utils</code>’); ?>

any occurence of <code>App::Utils</code> is replaced with:

<code>App::Utils</code>

be, prefix, suffix

Adding a hook with new prefix (begin delimiter) and suffix (end delimiter). The
following example replaces the default hook <?...!> with a new one <?new ...!>:

rm_hook(’be’, ’<?’, ’!’.’>’); # remove default hook (notice that we avoid

literal ending delimiter ’!>’ in order

not to be confused with default suffix

add_hook(’be’, ’<?new ’, ’!’.’>’); # adding a new hook

regex, regex, replace

The hook type regex is followed by a regular expression and a replace argument.
Whenever a regular expression is matched in text, it is “starfished” according to the
argument replace. If the argument replace is the string “comment”, it is treated as
the comment. If the argument replace is code, it is used as the evaluation code. For
example, the following source in an HTML file:

<!--<? $Star->add_hook(’regex’, qr/^.section:(\w+)\s+(.*)/,

sub { $_="<a name\"$_[2]\"><h3>$_[3]</h3" }) !>-->

line before

.section:overview Document Overview

line after

will produce the following output, in the replace mode:

line before

<a name"overview"><h3>Document Overview</h3

line after

ht:re2, regex, replace

The hook type ht:re2 is a special type used for Python and Makefile styles in order
to capture indentation, which needs to be maintained in the output. It is regular
expression based.

43

$o->addHook -- deprecated, should use add hook

This method is deprecated. It will be gradually replaced with add hook, which is better
defined since it includes hook type.

Adds a new hook. The method can take two or three parameters:

($prefix, $suffix, $evaluator)

or

($regex, $replacement)

In the case of three parameters ($prefix, $suffix, $evaluator), the parameter
$prefix is the starting delimiter, $suffix is the ending delimiter, and $evaluator is the
evaluator. The parameters $prefix and $suffix can either be strings, which are matched
exactly, or regular expressions. An empty ending delimiter will match the end of input.
The evaluator can be provided in the following ways:

special string ’default’

in which case the default Starfish evaluator is used,

special strings ’ignore’ and ’echo’

’ignore’ ignores the hook and produces no echo, ’echo’ simply echos the contests
between the delimiters.

other strings

are interpreted as code which is embedded in an evaluator by providing a local $,
$self which is the current Starfish object, $p - the prefix, and $s the suffix. After
executing the code $p.$.$s is returned, unless in the replacement mode, in which $
is returned.

code reference (sub {...})

is interpreted as code which is embedded in an evaluator. The local $ provides the
captured string. Three arguments are also provided to the code: $p - the prefix, $,
and $s - the suffix. The result is the value of $.

For the format with two parameters, ($regex, $replacement), currently in this mode
addHook understands replacement ’comment’ and code reference (e.g., sub { ... }). The
replacement ’comment’ will repeat the token in the non-replace mode, and remove it in
the replace mode; e.i., equivalent to no echo. The regular expression is matched in the
multi-line mode, so ˆ and $ can be used to match beginning and ending of a line. (Caveat:
Due to the way how scanner works, beginning of a line starts after the end of previously
matched token.)

Example:

$Star->addHook(qr/^#.*\n/, ’comment’);

44

$o->ignore outer()

Sets the mode for ignoring the outer text in the replace mode. The function sfish ignore outer

does the same on the default object Star. If an argument is given, it is used to set the
mode, so as a consequence the mode can be turned off by giving the argument ”.

$o->last update()

Or just last update(), returns the date of the last update of the output.

$o->process files(@args)

Similar to the function starfish cmd, but it expects already built Starfish object with
properly set options. Actually, starfish cmd calls this method after creating the object
and returns the object.

$o->rmHook($p,$s) -- deprecated, should use rm hook

Removes a hook specified by the starting delimiter $p, and the ending delimiter $s.

$o->rm hook($ht,...) -- and function rm hook

Removes a hook. Example:

rm_hook(’be’, ’<?’, ’!>’); # removes all hooks with give begin and end

$o->rmAllHooks()

Removes all hooks. If no hooks are added, then after exiting the current snippet it will
not be possible to detect another snippet later. A typical usage could be as follows:

$Star->rmAllHooks();

$Star->add_hook(’be’, ’<?starfish ’,’?>’, ’default’);

$o->setStyle($s) -- deprecated, shoud use set style

Deprecated method. The method or function set style should be used.

set style method or function

Sets a particular style of the source file. If used as function, the object $::Star is used
as the ”self” object. Currently implemented options are: html, java, makefile, perl, ps,
python, and tex (same as latex, TeX). If the parameter $s is not given, the stile given in

45

$o-{STYLE}> will be used if defined, otherwise it will be guessed from the file name in
$o-{INFILE}>. If it cannot be correctly guessed, it will be the Perl style.

Setting a style can have various side effects, but it typically involves setting the following
variables:

$o->{Style} # style string id

$o->{CodePreparation} # function to clean the code before running

$o->{LineComment} # string starting a line comment

$o->{OutDelimiters} # array ref with four elements: $b1, $b2 for

starting output delimiter, and $e1, $e2 for

the ending output delimiter; $b1 and $e1

must not end with a digit, and $b2 and $e2

must not start with a digit

$o->{IgnoreOuter} # boolean variable to ignore outer text, false

by default

$o->{hook} # array ref, list of hooks

A.7 PREDEFINED FUNCTIONS

include(filename and options) -- starfish a file and echo

Reads, starfishes the file specified by file name, and echos the contents. Similar to PHP
include. Uses getinclude function.

getinclude(filename and options) -- starfish a file and return

Reads, starfishes the file specified by file name, and returns the contents (see also include
to echo the content implicitly). By default, the program will not break if the file does not
exist. The option -noreplace will starfish file in a non-replace mode. The default mode is
replace and that is usually the mode that is needed in includes (non-replace may lead to a
suprising behaviour). The option -require will cause program to croak if the file does not
exist. It is similar to the PHP function require. A special function named require is not
used since require is a Perl reserved word. Another interesting option is -copyhooks,
for using hooks and some other relevant properties from the Star object ($::Star). This
option is eventually passed to new, so you can see the constructor new for more details.

The code for get include is the following:

sub getinclude($@) {

my $sf = loadinclude(@_);

$sf->_digest();

return $sf->{Out};

}

46

and it can be used as a useful template for using loadinclude directly. The function
loadinclude creates a Starfish object, and reads the file, however it is not digested yet,
so one can modify the object before this.

loadinclude(filename and options) -- load file and get ready to
digest

The first argument is a filename. Loadinclude will interpret the options -replace,
-noreplace, and -require. A Starfish object is created by passing the file name as
an -infile argument, and by passing other options as arguments. The file is read and the
object is returned. By default, the program will not break if the file does not exist or is
not readable, but it will return undef value instead of an object. See also documentation
about include, getinclude, and new.

-noreplace option will set up the Starfish object in the no-replace mode. The default
mode is replace and that is usually the mode that is needed in includes. The option
-require will cause program to croak if the file does not exist. An interesting option is
-copyhooks, which is documented in the new method.

read starfish conf

This function is usually called at the begining of a starfish file, in order to read local
configuration. it tests whethere there exists a filed named starfish.conf in the current
directory. If it does exist, it checks for the same file in the parent directory, then gran-
parent directory, etc. Once the process stops, is starts executing the configuration files in
the order from first ancestor down. For each file, it changes directory to the corresponding
directory, and requires (in Perl style) the file in the package main.

sfish add tag (tag, action)

Used to introduce simple tags such as line tag %sl,l: and %<sl,l>...</sl,l> in TeX/LaTeX
for inclusion and exclusion of text. Example:

sfish_add_tag(’sl,l’, ’echo’);

sfish_add_tag(’slide’, ’ignore’);

and, for example, the following text is included:

%sl,l:some text to the end of line

%<sl,l>

more lines of text

%</sl,l>

and the following text is excluded:

47

%slide:this line is excluded

%<slide>

more lines of text excluded

%</slide>

sfish ignore outer()

Sets the default object $Star in the mode for ignoring outer text if in the replace mode.
If an argument is given, it is used to set the mode, so as a consequence the mode can be
turned off with sfish ignore outer(’’).

starfish cmd list of file names and options

The function starfish cmd is called by the script starfish with the @ARGV list as the
list of arguments. The function can also be used from Perl code to ”starfish” a file, e.g.,

starfish_cmd(’somefile.txt’, ’-o=outfile’, ’-replace’);

The arguments of the functions are provided in a similar fashion as argument to the
command line. As a reminder, the command usage of the script starfish is:

starfish [-o=outputfile] [-e=initialcode] [-replace] [-mode=mode] file...
The options are described below:

-o=outputfile

specifies an output file. By default, the input file is used as the output file. If the
specified output file is ’-’, then the output is produced to the standard output.

-e=initialcode

specifies the initial Perl code to be executed.

-replace

will cause the embedded code to be replaced with the output. WARNING: Normally
used only with -o.

-mode=mode

specifies the mode for the output file. By default, the mode of the source file is used
(the first one if more outputs are accumulated using -o). If an output file is specified,
and the mode is specified, then starfish will set temporarily the u+w mode of the
output file in order to write to that file, if needed.

Those were the options.

echo list

appends all elements of the list to the special variable $0.

48

DATA FUNCTIONS

read records($string)

The function reads strings and translates it into an array of records according to DB822
(db8 for short) data format. If the string starts with ’file=’ then the rest of the string
is treated as a file name, which contents replaces the string in further processing. The
string is translated into a list of records (hashes) and a reference to the list is returned.
The records are separated by empty line, and in each line an attribute and its value are
separated by the first colon (:). A line can be continued using backslash (\) at the end of
line, or by starting the next line with a space or tab. Ending a line with \ will replace
”\\\n” with ”\n” in the string, otherwise ”\n[\t]” are kept as they are. Lines starting
with the hash sign (#) are considered comments and they are ignored, unless they are
part of a multi-line string. An example is:

id:1

name: J. Public

phone: 000-111

id:2

etc.

If an attribute is repeated, it will be renamed to an attribute of the form att-1, att-2,
etc.

DATE AND TIME FUNCTIONS

current year

returns the current year in string format.

file modification time

Returns modification time of this file (in format of Perl time).

file modification date

Returns modification date of this file (in format: Month DD, YYYY).

FILE FUNCTIONS

appendfile $filename, @list

appends list elements to the file.

49

getfile $filename

reads the contents of the file into a string or a list.

getmakefilelist($makefilename, $var)

returns a list, which is a list of words assigned to the variable $var in the makefile named
$makefilename; for example:

FILE_LIST=file1 file2 file3\

file4

<? echo join "\n", getmakefilelist $Star->{INFILE}, ’FILE_LIST’ !>

Embedded variables are not handled.

putfile $filename, @list

Opens the file $filename, wries the list elements to the file, and closes it. ‘putfile
filename’ will only touch the file.

A.8 STYLES

There is a set of predefined styles for different input files: HTML (html), HTML templating
style (html.sfish), TeX (tex), Java (java), Makefile (makefile), PostScript (ps), Python
(python), and Perl (perl).

HTML Style (html)

HTML Templating Style (html.sfish)

This style is similar to the HTML style, but it is supposed to be run in the replace mode
towards a target .html file, so it allows for more hooks. The character # (hash) at the
beginning of a line denotes a comment.

Makefile Style (makefile)

The main code hooks are <? and >.
Interestingly, the makefile style has similar special requirements as Python. For example,

in the following expansion:

starfish: tmp

starfish Makefile

#<? if (-e "file.tex.sfish")

#{ echo "\tstarfish -o=tmp/file.tex -replace file.tex.sfish\n" } !>#+

50

starfish -o=tmp/file.tex -replace file.tex.sfish

#-

it is convenient to have the embedded output indented in the same way as the embedded
code.

A.9 STYLE SPECIFIC PREDEFINED FUNCTIONS

get verbatim file(filename)

Specific to LaTeX mode. Reads textual file filename and returns a string ready for inclusion
in a LaTeX document. It untabifies the file contests for proper representation of whitespace.
The function code is basically:

return "\\begin{verbatim}\n".

untabify(scalar(getfile($f))).

"\\ end{verbatim}\n";

Note: There is no space betwen \\ and end{verbatim}.

htmlquote(string)

The following definition is taken from the CIPP project.
(http://aspn.activestate.com/ASPN/CodeDoc/CIPP/CIPP/Manual.html, link does not

seem to be active any more)
This command quotes the content of a variable, so that it can be used inside a HTML

option or <TEXTAREA> block without the danger of syntax clashes. The following
conversions are done in this order:

& => &

< => <

" => "

A.10 LIMITATIONS AND BUGS

The script swallows the whole input file at once, so it may not work on small-memory
machines and with huge files.

A.11 THANKS

I’d like to thank Steve Yeago, Tony Cox, Tony Abou-Assaleh for comments, Charles Ikeson
for suggesting the include function and other comments, and Mohammad S Anwar for
corrections in Perl packaging.

51

A.12 AUTHORS

2001-2020 Vlado Keselj http://web.cs.dal.ca/~vlado

and contributing authors:

2007 Charles Ikeson (overhaul of test.pl)

This script is provided ”as is” without expressed or implied warranty. This is free
software; you can redistribute it and/or modify it under the same terms as Perl itself.

The latest version can be found at http://web.cs.dal.ca/~vlado/srcperl/.

A.13 SEE ALSO

There are several projects similar to Starfish. Some of them are text-embedded program-
ming projects such as PHP with different programming languages, and there are similar
Perl-based projects. When I was thinking about a need of a framework like this one (1998),
I have found ePerl project. However, it was too heavy weight for my purposes, and it did
not support the ”update” mode, vs. replace mode of operation. I learned about more
projects over time and they are included in the list below.

[ePerl] ePerl

This script is somewhat similar to ePerl, about which you can read at

http://www.ossp.org/pkg/tool/eperl/. It was developed by Ralf S. Engelshall in the
period from 1996 to 1998.

php

http://www.php.net

[ePerl-h] ePerl hack by David Ljung Madison

This is a Perl script simulating the ePerl functionality, but with obviously much
lower weight. It is developed by David Ljung Madison, and can be found at the
URL: http://marginalhacks.com/Hacks/ePerl/

[Text::Template] Perl module Text::Template by Mark Jason Dominus.

http://search.cpan.org/~mjd/Text-Template/ Text::Template is a module with similar
functionality as Starfish. An interesting similarity is that the output variable in
Text::Template is called $OUT, compared to $O in Starfish.

[HTML::Mason] Perl module HTML::Mason by Jonathan Swartz, Dave Rol-
sky, and Ken Williams.

http://search.cpan.org/~drolsky/HTML-Mason-1.28/lib/HTML/Mason/Devel.pod The
module HTML::Mason can also be seen as an embedded Perl system, but it is a
larger system with the design objective being a ”high-performance, dynamic web
site authoring system”.

52

[HTML::EP] Perl Module HTML::EP - a system for embedding Perl into HTML,
by Jochen Wiedmann.

http://search.cpan.org/~jwied/HTML-EP-MSWin32/lib/HTML/EP.pod It seems
that the module was developed in 1998-99. Provides a good CGI support, run-time
support, session handling, a database server interface.

53

	Introduction
	Preprocessing and Text-Embedded Programming (PTEP)
	Goals of Starfish Development
	Java Preprocessor Example
	Fully-Embedded Preprocessor
	Preprocessing Multiple Files
	Replace Mode

	The Name of the Game
	Overview

	Background and Related Work
	Text-Embedded Programming
	Perl-based Embedded Programming
	PTEP in the Update Mode

	Starfish Usage and Design
	Modifying Starfish to Different Text Styles
	Default Style Example: Makefiles
	HTML Style Example

	Text Styles
	HTML-Sfish Style (html.sfish)

	Hooks
	Iterative Processing
	Starfish Processing Model
	Method digest
	Method _scan

	Conclusion
	POD Documentation
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	PREDEFINED VARIABLES AND FIELDS
	METHODS
	PREDEFINED FUNCTIONS
	STYLES
	STYLE SPECIFIC PREDEFINED FUNCTIONS
	LIMITATIONS AND BUGS
	THANKS
	AUTHORS
	SEE ALSO

